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Abstract. By adaptation and extension of the Brout-Nauenberg quantum surface tension 
theory, exact quantum statistical mechanical equations for inhomogeneous fluid regions 
are derived. For free helium surfaces and the 3He-4He interface in the zero-pressure ground 
state, the equation appears as an analogue of the classical first BBGKY equation, in integral 
form. For thin films, a similar equation is derived containing a wall potential term. Such 
equations could be used to determine parameters relevant to the variation of the number 
density, or the z component of the kinetic energy density, with the normal coordinate z. 
Excited states and their ensemble averages are also considered and a quantum analogue 
of the classical virial equation of state is derived. 

1. Introduction 

Much recent interest has been shown in the surface phenomena of liquid 4He, and of 
dilute solutions of 'He in 4He. Theories on the surface tension of 4He (eg Brout and 
Nauenberg 1958, Bowley 1970, Chang and Cohen 1973) and on the surface states of 
adsorbed 3He on 4He (eg Lekner 1970) have shown clearly the need for fairly detailed 
knowledge of the variation of the number density n(z) through the liquid-vapour inter- 
face (z is a coordinate perpendicular to the interface). This problem can be handled 
with reasonable success using parameterized forms for n(z), the parameters being deter- 
mined by applying variational techniques to the surface tension y (see Shih and Woo 
1973 Chang and Cohen 1973). However, to date no rigorous quantum theoretical 
equation useful in determining the density profile exists. 

In this paper it is shown that a quantum analogue of the classical first Bogolyubov- 
Born-Green-Kirkwood-Yvon (BBGKY) equation 

exists, in integral form, for the zero-pressure ground state ( T  = 0, pressure Po = 0) of 
a quantum fluid. Here d2)(rl ,  r 2 )  is the usual pair distribution function. We assume 
only the existence of an N-particle ground-state eigenfunction $o(rl, . . . , rN) of the 
Hamiltonian 

The potential U ( N )  = Zf, j =  V(rij)  includes only internal two-body interactions, in 
order to preserve the simple analogy with (1). The effect of an external potential of the 
form w(z) per particle is also considered. 
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For excited eigenstates $, with pressure P,, # 0 our equation does not apply, but a 
corresponding equation is derived. A quantum theoretic analogue of the classical 
virial equation of state 

dV 
dr 

P = nkT-i d3rr-n(2)(r), (3) 

(two-body interactions only) where n is the bulk number density, is easily derived as a 
corollary. All equations are independent of particle statistics. 

In the case of classical statistical mechanics, where particle momenta pi are permitted 
to vary independently of position coordinates r i  in phase space, the probability of a 
given particle distribution is proportional to the Boltzmann factor exp( - U(N)/kT). 
Equation (1) is then obtained by simple differentiation of the expression 

and has been used by Berry and Reznek (1971) to determine n(z) approximately. It 
can also be shown that (1) is equivalent to the condition P = constant in the normal 
direction across the liquid-vapour interface, ie to mechanical equilibrium of the inter- 
face in the normal sense. 

In the quantum statistical mechanical case, the momenta pi = (h/i)V, are uniquely 
determined by the system configuration via l(/(rl,.  . . , rN). Differentiation of the expres- 
sion 

(l(/ is taken to be normalized such that J $t$ d3r1,,.N = 1 throughout the text) then leads 
to nothing new. Derivation of an analogue of (1) is a more complicated procedurg, 
which we give below. In its simplest form our ground-state equation is applicable to the 
free surfaces of pure 4He and 3He. With suitable modifications it may be applied to the 
free surface of dilute (<6.4%) mixtures of 3He in 4He, and to the 3He-4He interface. 
For thin films an independent equation is derived. 

2. The pressure tensor equation 

We consider a cuboidal enclosure with sides of length b, and thickness 2a, containing N 
atoms in a configuration with Slab symmetry about the mid-plane, as shown in figure 1. 

Figure 1. The slab enclosure containing N atoms, with two planar liquid-vapour inter- 
faces and symmetry about the mid-plane. The origin of axes is arbitrary. 
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In the limit b/a --+ CO (and N -+ 00) perimeter effects disappear and two planar surfaces 
of area b2 result. Effectively, the lower half-slab contains a mirror image in the mid- 
plane of the system in the upper half-slab. The wavefunctions $ contain all the informa- 
tion regarding bulk (liquid and vapour) and surface structure. Thus $o represents the 
ground state of the system (T  = 0, Po = 0) with a vapour phase absent and two liquid- 
vacuum interfaces of area b2. The $, represent excited states with non-zero vapour 
densities. The volume V = 2abz will be considered fixed on passing from one state to 
another and N ,  of course, varies directly with bZ to simulate physically real conditions. 
Where appropriate, the liquid slab will be assumed to be sufficiently thick for bulk 
liquid conditions to prevail around the mid-plane. 

In principle some potential w(z) per particle, symmetric about the mid-plane, should 
be included in the Hamiltonian (2)  to force the system to take up the desired configuration. 
This is particularly true of the 'ground state', since otherwise a state of lower energy could 
always be attained by allowing the system to take up the configuration of a spherical 
drop of liquid. The effects of such a potential, and justification for its omission here, 
are considered in Q 5 .  

The energy of the system is 

En(', A )  = $,tH$, d3r1,,,N (6)  J" 
where H is given by (2) and 

V = 2ab2, A = 2b2. (7) 

We define a variable scale factor A such that ri = A<. ( i  = 1 to N ) .  It can then be shown 
that 

where 

and the components p y y , p z z  of the pressure tensor are similarly defined. Note that in 
order to simplify notation we have omitted the subscript 'H' on these components, and 
likewise for other quantities in the text. We also have: 

where P, = -(aE,JdV), is the system pressure, and y,, = (aEJaA), the coefficient of 
surface tension appropriate to state $,. 

A separate expression for the surface tension coefficient y,, is now derived, in the 
limit b/a -+ CO : 

where (7) has been used to re-express E, and A as functions of b and K We have also used 
the coordinate transformation: x i  = bxi, y i  = by; ,  zi = 2az; = (V/b2)zi  to express H as 
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a function of b and V. With these scale factors the primed coordinates range over a 
unit cube. Hence 

Using (8), (10) and (12) we find 

A corresponding equation for a spherical volume of fluid has been derived by Brout 
and Nauenberg (1958), whose work has provided much of the stimulus for this research. 
In their case, however, the choice of a spherically-symmetric system impeded progress 
beyond their equation (25) (the equation corresponding to (13)). Indeed their planar 
surface tension expression is somewhat more easily derived from (1 1) above (see Buchan 
1974). 

Now 
Pzz(r1) = P,,(Zl) = 2t,(z,)+z,f(zJ 

where 

is the z component of the kinetic energy density, and 

The identity d2)(r1, r2) = N ( N -  1)s $!$,, d3r3,..N has been used in (15). 
I/ = J', d3r,,  (13) becomes 

Using 

2Pna = pZ,dz s 
where integration extends across the thickness 2a of the slab. 

3. The ground state 

For the ground state with pressure Po = 0, corresponding to the end-point of the liquid- 
vapour coexistence line for 3He and 4He, (16) gives 

m 
dzzG(z) = 0 (17) 

where G(z) = d/dz(2t2(z))-f(z), by partial integration of the first term in p,, .  The limits 
of integration have been extended since both terms in G(z) vanish outside the fluid; 
they also vanish deep inside the fluid We note now that nowhere have we specified the 
origin of axes, ie z = 0 is arbitrary. Choosing the mid-plane as the plane z = 0, it is 
clear that G(z) is an antisymmetric function for the slab. Thus zG(z) is symmetric and 
so we derive for the upper half-slab 

JOm dz zG(z) = 0. 
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Further, it is physically evident that G(z) is a function whose value in the plane z = z1 
is determined not by the absolute value of z1 but by the location of that plane relative 
to the rest of the surface layers. Hence G(z) may be written as a function G(t) of a new 
variable t ,  where t = 0 is a plane fixed with respect to the inhomogeneous surface layers. 
It can then be shown, using the arbitrariness of the thickness of the slab of fluid, while 
assuming this to be sufficiently macroscopic for bulk conditions to prevail at z = 0, 
that (18) implies J," dzG(z) = 0. A proof is given in the appendix. Hence we have for a 
free surface on bulk fluid 

where integration extends across the inhomogeneous layers, ie those regions where 
G ( z )  # 0. 

This equation represents a quantum analogue of (l), in integral form, with d/dz(2tZ(z)) 
the analogue of d/dz(n(z)kT). We note that by simple intuition an equation G(z) = 0 
might be written as the analogue of (1). However, while such an equation satisfies (19), 
it is in no way implied by it. This point is further discussed in our conclusions. 

4. Excited states of the system 

For states @, with non-zero pressure P,, the right-hand side of (1  3) contains the term 

= - jj d3r1 d3r2z2- 212 -d2)(z1, dV r12) .  
r12 dr1, 

Hence 

where 

Thus (1 3) becomes 
c c 

J d3rlP, = J d3rl(2t,(zl)-F(~1)). 
V V 

The integrand terms are even functions of z for our slab-symmetric system when z = 0 
locates the mid-plane, and so 

dz1(2t,(z1)-F(~~)-P,) = 0 (23) 
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where integration extends across a single liquid-vapour interface. At any finite tem- 
perature Tthis relation clearly obtains if the terms of the integrand are replaced by their 
ensemble averages. 

In the case of a homogeneous system, ie when $” describes a uniform distribution 
of matter, we may remove the integral signs from (22). Further, owing to isotropy, z12 
may equally well be replaced by xlZ or y,, in F(rl). Hence 

dV s dr 
P,, = 2tB-d d3rr-n(’)(r) 

where 

is a component of the bulk kinetic energy density. Expressing (24) as an ensemble 
average we obtain our quantum analogue of (3): 

dV s dr 
p = (P,) = (2t,)-$ d3rr--(n(”(r)). 

This equation has been derived independently by McLellan (1974). Similar techniques 
were employed there, but the arguments were confined to homogeneous systems. 

5. Inclusion of external potential 

We consider the effects of an external potential per particle of the form w(z), where z = 0 
locates the mid-plane of the slab. w(z) will be an even function of z, so that the upper and 
lower half-slabs remain ‘mirror image’ systems. Thus w(z) = mglzl is the gravitational 
potential, and w(z) = -ma/lz13 represents the van der Waals potential in the field of a 
solid substrate at z = 0. 

The extra term w(zk) in the Hamiltonian (2) results in the addition of a term 
-zn(z) dw/dz to pzz(r) in both (8) and (12). For the ground state (8 3), (18) remains valid, 
with G(z) now containing n(z) dw/dz. However, G(z) may only be written as a function 
G(t) if dw/dz is independent of z. Thus a modified form of (18) may only be derived for 
the gravitational potential. The equation is, for the upper half-slab : 

where integration extends now across the entire system, since the effect of w(z) will be 
to render even the ‘bulk’ inhomogeneous, with the integrand of (26) non-zero not only 
in the surface layers. 

We stated in § 2 that a potential w(z) was required to force the system to take up the 
assumed slab-symmetric configuration. In that case, assuming a gravitational-type 
potential, the correct equation is of the form (26) rather than of the form (19). However, 
the external force field need only be sufficiently strong to give the slab-symmetric con- 
figuration less energy than any other configuration with lower surface area. Clearly, 
in the case of an arbitrarily large system the external potential may be made arbitrarily 
weak, since we may allow the surface to volume ratio to become vanishingly small (by 
using the limits a, b + CO, while simultaneously permitting b/a --+ CO as required for (1 1)). 
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Hence in the thermodynamic limit ( N  + a), we may neglect the external potential 
(g -, 0) and retrieve equation (19). 

In the case where g is considered to remain finite (eg the earth’s gravitational poten- 
tial), (26) is the relevant equation; but then the corresponding classical equation (1) 
also contains the term mgn(z) and the analogy is sustained. Even then, when the surface 
thickness is of the order of a few atomic diameters, the quantity f(z)/n(z), representing 
the net pull on a particle due to the van der Waals forces, will be considerably larger 
in the surface regions than mg, so that the latter force may to good approximation be 
neglected. 

The van der Waals potential, representing the attractive effects of a wall at z = 0 for 
the upper half-slab, is important in the case of helium films (here, of unspecified thickness). 
For such a potential, with dw(z)/dz a function of z, we must content ourselves with the 
equation (17), since an equation of the type (26) cannot be derived. Thus for the ground 
state of a helium film on a wall at z < 0 giving rise to a potential w(z) per particle: 

JOm dzz( dz 

For excited states, we add the term - zn(z) dw/dz to the integrand of (23). 

6. Application to 3He-4He mixtures 

For a system containing N ,  ,He and N4 4He atoms ( N 3  + N, = N )  the Hamiltonian 
becomes 

N ,j2 N4 h2 
H =  - - - - C V ? - -  V ? +  J V (  rij). 

2m4 i =  1 2m3 j = N 4 +  1 i >  j =  1 

All of the results of $ 2  can be shown to apply, with appropriate quantities split into 
their ‘partial’ components. Thus pzz(r) becomes pZz,,(r) + pzZ,,(r)  where the partial 
pressure tensor component pZz,,(r) is defined as : 

and pzz,3(r)  is similarly defined. 
IC/n(rl,. . . , rN4;  r’, , . . . , r;VJ describes the appropriate configuration of the system 

and must, of course, in principle be written in a form which is symmetric with respect 
to the interchange of bosons, and antisymmetric for the fermions. Choice of i+bn by itself 
poses a fundamental problem. Note that in the pair distribution function nlB(ri .  r j )  
the first coordinate ri is that of the atomic species a, and rj that of atomic species /?. 

For the ground state of the system, with Po = 0, there are two distinct cases of interest 
The first occurs for x = N , / N  < 6.4%, when mixing is complete; and the second for 
x > 6.4% when phase separation occurs. In the unseparated case, it is easily shown 
that all of the considerations of 5 3 apply, and hence equation (19), the terms of the inte- 
grand being expressed as sums of partial terms. 
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In the phase-separated case, equation (17) applies. $ o ( r l , .  . . , r N s ;  r; , . . . rh3) then 
describes a configuration of the system with a dilute (6.4%) 3He-in-4He layer sand- 
wiched symmetrically between two pure 'He layers. Thus we have in the upper half-slab 
a 3He-4He interface, and a free liquid-vacuum interface on pure 3He. Equation (19) 
is already known to apply to the latter. If x is sufficiently large, we may assume both the 
mixed layer and the pure 'He layer to be sufficiently macroscopic for bulk conditions 
to prevail well inside each, ie G(z) = 0. Then we have 

J: dz z G(z) = 0 

where z = c is a plane deep in the pure 3He layer where G(z) N 0. The same arguments 
outlined above, after equation (18), can then be used to show that (19) also applies to the 
interface between the separated phases. 

For excited states of the two-component system, (23) is valid in the inhomogeneous 
case if the pair distribution function in F(z , )  is expressed as the sum over species 

n(2)(z1, r12) = 1 n$)(z1, r12). 
a.B 

For a homogeneous mixture, (25) again obtains with the same condition on d2) ( r ) ,  
ie n'*)(r) = n$)(r). 

7. Conclusions 

A quantum analogue of the classical first BBGKY integro-differential equation has been 
derived, and has been shown to apply to the liquid-vacuum interface of pure 3He and 
4He, and of 3He-4He mixtures, in the ground state. It is also valid for the interface of 
phase-separated mixtures at T =  0. The equation appears in integral form, ie if the 
classical equation is written G,(z) = 0 for all z through the interface, then our equation 
is written J G(z) dz = 0 where G(z) is a quantum statistical mechanical counterpart of 
C,(z), and integration extends across the inhomogeneous layers. We pointed out in 
6 3 that an equation C(z) = 0 was in no way implied by our arguments regarding the 
zero-pressure ground state. It might nevertheless be speculated by the reader that even 
in the quantum case the particles should distribute themselves in the interface such that 
'mechanical equilibrium' is attained, ie G(z) = 0 everywhere. However, the correct 
distribution of particles must be that which, first and foremost, yields the minimum 
surface free energy. 

In the classical case ( T  # 0), minimization of the surface free energy is assured by use 
of the Boltzmann factor exp( - U/kT).  The equation (l), representing mechanical 
equilibrium, is consistent with the use of this distribution factor. In the quantum- 
mechanical case, the correct distribution of particles in the ground state, given by t,bo, 
is obtained by solving the many-particle wave equation : 

W O  = E d 0  (30) 

with the appropriate boundary conditions. Thus (30) together with the correct ground- 
state boundary conditions must yield the ground-state wavefunction (clo, and the cor- 
responding distribution of particles must be that which yields the minimum surface 
energy. But our equations (19) and (26) were derived by equating two expressions for 
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the surface energy, namely (8) and (12). Built into both these expressions was the eigen- 
value equation (30), and the subsequent development to equations (19) and (26) em- 
ployed the correct ground-state boundary conditions, ie t,bo(rl,. . . , r N )  --* 0 whenever 
any of { r l , .  . . . rN}  range well outside the liquid; and Po = 0. 

Thus we see that the ground-state distribution of particles t,bo(rl,. . . , rN) is implicitly 
included in our equations. Working within the framework of quantum theory, we 
have shown that J’ dz G(z) = 0 is proven for the ground state, but that the classical-like 
condition of ‘mechanical equilibrium’ (G(z) = 0) is not necessarily true. 

Indeed the nature of our result conforms with the familiar pattern of quantum 
mechanics, in which classical relations among dynamical variables, other than those 
having purely the significance of energy, become relations among corresponding ex- 
pectation values. For, writing our equation (26) in the form N-’J’ dz G(z) = 0, we see 
that it becomes a relation among expectation values. Thus J’ dz mgn(z)/N represents 
the expectation value of the external force per particle, and N -  J dz f(z) the expectation 
value of the net internal force per particle. The latter follows since f(z)/n(z) is inter- 
pretable as the net van der Waals force on a particle at z = z in the z direction. Similarly 
N -  J’ dz (d/dz)(2t2(z)) may be interpreted as the expectation value of the net ‘kinetic’ 
force per particle. 

This type of parallelism between classical and quantum mechanics is found, in the 
context of dynamics, in the laws of motion of a quantum system, given by Ehrenfest’s 
theorem (eg Messiah 1958). Thus while the classical laws of motion of a particle are 
purely local, ie apply at each point in the path of the particle, they become in quantum 
mechanics relations between corresponding expectation values. Similarly our equations 
(19) and (26) are, in the context of static equilibrium, the expectation-value analogues 
of the corresponding classical equations. 

For thin films an equation J’ dz zG(z) has been shown to apply, where G(z) includes 
an external (wall) potential term. Our equations, while clearly less useful in practice 
than a relation G(z) = 0, can in principle be used in determining the variation of the 
wavefunction, and hence the number density n(z), with the normal coordinate z. Thus 
they might be used to determinea parameter in any suggested wavefunction. Alternatively, 
they relate the normal component t2(zl) of the kinetic energy density to the variation of 
the pair distribution function n(’)(z,, r12) through the surface layers. However, as in the 
classical case, the pair distribution function n(rl , r2)  in inhomogeneous regions, ap- 
pearing in G(z), needs to be specified as a prerequisite to use of the equations. Thus 
approximation schemes such as those appearing in the theories of Shih and Woo (1973) 
and Chang and Cohen (1973) might be employed, or the wavefunction might be written 
in the modulated Jastrow form (for bosons) : 

N N 

with f ( r i j )  a known function, and h(z) to be determined from the above equations. 
In any case, the validity of our equations is not confined to 3He/4He systems, but 

extends to any system with Hamiltonian of the form (2), or any mixed system with the 
Hamiltonian (28). 
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Appendix 

We consider the equation (18) with G(z) containing the extra term n(z) dw/dz = mgn(z) 
arising from a gravitational-type potential, w(z) = mgz. For such a potential it is clear 
that G(z) may be written as a function G(t) of a new variable t ,  where t = 0 is a plane 
fixed relative to the surface regions, eg such that n(t = 0) = i n L  where nL is the liquid 
number density. Further, all quantities in G(z) will be independent of N for a sufficiently 
large system, ie independent of the thickness of the half-slab if we choose to vary this 
with N .  

Writing r = z - c and G(z) = G(t), (1 8) becomes 

h(c) = dz z G(z-c) = 0 jom 
which is true for all c, assuming only that c is sufficiently large for essentially ‘bulk’ 
conditions to prevail at z = 0. Hence 

dh dG 
- = 0 = - jo dz zdz = lom dz G(z) 
dc 

by partial integration, and (19) is obtained by putting w(z) = 0, 
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